|  | $P(B)$ | $P\left(B^{\prime}\right)$ |  |
| :--- | :--- | :--- | :--- |
| $P(A)$ | 0.1 | 0.25 | 0.35 |
| $P\left(A^{\prime}\right)$ | 0.5 | 0.15 | 0.65 |
|  | 0.6 | 0.4 | 1 |

$P(A)=0.35, P(B)=0.6, P(A$ and $B)=0.1$
$P\left(A^{\prime}\right)=1-0.35=0.65 ; P\left(B^{\prime}\right)=1-0.6=0.4$
Are A and B independent? $P(A$ and $B) ?=? P(A) P(B) \rightarrow 0.1 ?=?(0.35)(0.6) \rightarrow 0.1 \neq 0.21 \therefore \mathrm{~A}$ and B are NOT independent (they are dependent)

Are A and B mutually exclusive (disjoint)? Since the intersection between A and B exists $(P(A$ and $B)=$ 0.1 as well as all the other intersections), they cannot be mutually exclusive (disjoint)
$P\left(A^{\prime}\right.$ and $\left.B^{\prime}\right)=0.15$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=0.35+0.6-.01=0.85$
$P\left(A^{\prime}\right.$ or $\left.B\right)=P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime}\right.$ and $\left.B\right)=0.65+0.6-0.5=0.75$

